Vascanox HP 60 caps P060C602
Vascanox HP® is a next-generation product providing nitric oxide support for up to 24 hours with a single dose.*† Vascanox HP is powered by Calroy’s proprietary blend, Noxa24®, to support the natural production, storage, and release of nitric oxide.* Each 60-capsule bottle is a 1-2 month supply at recommended dosing levels.
The Effects
The physiological importance of nitric oxide was established in the 1990s and has since been confirmed by scientific studies and clinical experience.
In an open label published study, a single dose of Vascanox HP increased salivary nitric oxide levels for up to 24 hours.*†
Optimal nitric oxide levels have been shown to:
- Support a healthy cardiovascular system*
- Support and maintain blood pressure in the normal range*
- Support healthy circulation*
Vascanox HP is powered by Calroy’s proprietary blend, Noxa24®, to support the natural production, storage, and release of nitric oxide.* The formula targets nitric oxide metabolism, using multiple pathways.
The Science
Nitric oxide is a messenger molecule that is produced in the body through both nitric oxide synthase (NOS) pathway and nitrate-nitrite-nitric oxide pathway. Vascanox HP supports the entire biotransformation cycle for nitric oxide, including both pathways.*
Nitric Oxide Synthase Pathway
Nitric oxide synthases are a group of 3 enzymes catalyzing production of nitric oxide in the body. Endothelial NOS (eNOS) is primarily responsible for the generation of nitric oxide in the vascular endothelium. The mechanical force of blood flow triggers a response in the endothelial glycocalyx, which in turn signals the endothelium to generate nitric oxide.
Nitrate -> Nitrite -> Nitric Oxide Pathway
This pathway starts when inorganic nitrate, such as dietary nitrate in green leafy vegetables is ingested and absorbed into the circulation. Circulating nitrate is transported into the saliva gland and concentrated in the saliva. If secreted in the mouth, nitrate in the saliva is reduced to nitrite by nitrate reducing bacteria. Once swallowed, part of the nitrite is chemically reduced to nitric oxide in the stomach and the rest can be reduced to nitric oxide by several different enzymes after being absorbed.
The Ingredients
Vascanox HP contains a carefully curated selection of synergistic compounds derived from fruits and vegetables. In addition to potassium nitrate, a precursor for nitric oxide, a blend with polyphenols and antioxidant activities supports the entire biotransformation process for nitric oxide.
The product is assembled using a Total Quality System, which includes strict compliance with cGMP’s current good manufacturing practices as defined by the United States Food and Drug Administration.
Batch and test records are maintained throughout the manufacturing process to ensure the guaranteed quality of the final product.
We translate breakthrough science into products without parallel. Our mission is to advance science and enhance health – and our model combines rigorous research and development with an exacting approach to sourcing, manufacturing, and transparency. This groundbreaking work has led to the award of 2 patents, with more pending.
Research on nitric oxide and the vascular system
There are over 50,000 papers on PubMed that discuss nitric oxide and the vascular system.
Below are some of the major studies, which are grouped under major headings, though the content of the studies often overlap. Topics include:
- Vascular health and nitric oxide
- Nitric oxide production
- Synergy with hydrogen sulfide
- Exercise performance
The third-party information and links provided on this website are for educational and research purposes only, and are not intended to endorse, promote, or recommend any particular ingredient(s) or product(s).
Product-specific study
- Houston M, Chen C, D’Adamo C R, et al. (September 16, 2023) Effects of S-Allylcysteine-Rich Garlic Extract and Dietary Inorganic Nitrate Formula on Blood Pressure and Salivary Nitric Oxide: An Open-Label Clinical Trial Among Hypertensive Subjects. Cureus 15(9): e45369. doi:10.7759/cureus.45369
Vascular health and nitric oxide
- Förstermann Ulrich, Münzel Thomas. Endothelial Nitric Oxide Synthase in Vascular Disease. Circulation. 2006;113(13):1708-1714. doi:10.1161/CIRCULATIONAHA.105.602532
- Forte M, Conti V, Damato A, et al. Targeting Nitric Oxide with Natural Derived Compounds as a Therapeutic Strategy in Vascular Diseases. Oxidative Medicine and Cellular Longevity. 2016;2016:e7364138. doi:10.1155/2016/7364138
- Infante T, Costa D, Napoli C. Novel Insights Regarding Nitric Oxide and Cardiovascular Diseases. Angiology. 2021;72(5):411-425. doi:10.1177/0003319720979243
- Levine AB, Punihaole D, Levine TB. Characterization of the Role of Nitric Oxide and Its Clinical Applications. Cardiology. 2012;122(1):55-68. doi:10.1159/000338150
- Lima B, Forrester MT, Hess DT, Stamler JS. S-Nitrosylation in Cardiovascular Signaling. Circulation Research. 2010;106(4):633-646. doi:10.1161/CIRCRESAHA.109.207381
- Sverdlov AL, Ngo DTM, Chan WPA, Chirkov YY, Horowitz JD. Aging of the Nitric Oxide System: Are We as Old as Our NO? J Am Heart Assoc. 2014;3(4):e000973. doi:10.1161/JAHA.114.000973
- Toda N, Ayajiki K, Okamura T. Nitric oxide and penile erectile function. Pharmacol Ther. 2005;106(2):233-266. doi:10.1016/j.pharmthera.2004.11.011
- Torregrossa AC, Aranke M, Bryan NS. Nitric oxide and geriatrics: Implications in diagnostics and treatment of the elderly. J Geriatr Cardiol. 2011;8(4):230-242. doi:10.3724/SP.J.1263.2011.00230
- Tran N, Garcia T, Aniqa M, Ali S, Ally A, Nauli S. Endothelial Nitric Oxide Synthase (eNOS) and the Cardiovascular System: in Physiology and in Disease States. Am J Biomed Sci Res. 2022;15(2):153-177.
Research on Nitric Oxide Production
Nitric Oxide Production
- Alvares TS, Conte-Junior CA, Silva JT, Paschoalin VMF. Acute L-Arginine supplementation does not increase nitric oxide production in healthy subjects. Nutr Metab (Lond). 2012;9:54. doi:10.1186/1743-7075-9-54
- Bartosch AMW, Mathews R, Tarbell JM. Endothelial Glycocalyx-Mediated Nitric Oxide Production in Response to Selective AFM Pulling. Biophys J. 2017;113(1):101-108. doi:10.1016/j.bpj.2017.05.033
- Dragovich MA, Chester D, Fu BM, et al. Mechanotransduction of the endothelial glycocalyx mediates nitric oxide production through activation of TRP channels. American Journal of Physiology-Cell Physiology. 2016;311(6):C846-C853. doi:10.1152/ajpcell.00288.2015
- Förstermann Ulrich, Münzel Thomas. Endothelial Nitric Oxide Synthase in Vascular Disease. Circulation. 2006;113(13):1708-1714. doi:10.1161/CIRCULATIONAHA.105.602532
- Ghimire K, Altmann HM, Straub AC, Isenberg JS. Nitric oxide: what’s new to NO? Am J Physiol Cell Physiol. 2017;312(3):C254-C262. doi:10.1152/ajpcell.00315.2016
- Gouverneur M, Berg B, Nieuwdorp M, Stroes E, Vink H. Vasculoprotective properties of the endothelial glycocalyx: effects of fluid shear stress. J Intern Med. 2006;259(4):393-400. doi:10.1111/j.1365-2796.2006.01625.x
- Kurzelewski M, Czarnowska E, Beresewicz A. Superoxide- and nitric oxide-derived species mediate endothelial dysfunction, endothelial glycocalyx disruption, and enhanced neutrophil adhesion in the post-ischemic guinea-pig heart. J Physiol Pharmacol. 2005;56(2):163-178.
- Lundberg JO, Weitzberg E, Gladwin MT. The nitrate–nitrite–nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov. 2008;7(2):156-167. doi:10.1038/nrd2466
- Tejero J, Shiva S, Gladwin MT. Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation. Physiological Reviews. 2019;99(1):311-379. doi:10.1152/physrev.00036.2017
- Torregrossa AC, Aranke M, Bryan NS. Nitric oxide and geriatrics: Implications in diagnostics and treatment of the elderly. J Geriatr Cardiol. 2011;8(4):230-242. doi:10.3724/SP.J.1263.2011.00230
Synergy with hydrogen sulfide
- Altaany Z, Ju Y, Yang G, Wang R. The coordination of S-sulfhydration, S-nitrosylation, and phosphorylation of endothelial nitric oxide synthase by hydrogen sulfide. Sci Signal. 2014;7(342):ra87. doi:10.1126/scisignal.2005478
- Bailey TS, Zakharov LN, Pluth MD. Understanding Hydrogen Sulfide Storage: Probing Conditions for Sulfide Release from Hydrodisulfides. J Am Chem Soc. 2014;136(30):10573-10576. doi:10.1021/ja505371z
- Blackwood EA, Glembotski CC. Hydrogen sulfide: the gas that fuels longevity. The Journal of Cardiovascular Aging. 2022;2(3):26. doi:10.20517/jca.2022.16
- Bryan NS, Lefer DJ. Update on Gaseous Signaling Molecules Nitric Oxide and Hydrogen Sulfide: Strategies to Capture their Functional Activity for Human Therapeutics. Mol Pharmacol. 2019;96(1):109-114. doi:10.1124/mol.118.113910
- Cirino G, Vellecco V, Bucci M. Nitric oxide and hydrogen sulfide: the gasotransmitter paradigm of the vascular system. British Journal of Pharmacology. 2017;174(22):4021-4031. doi:10.1111/bph.13815
- Coletta C, Papapetropoulos A, Erdelyi K, et al. Hydrogen sulfide and nitric oxide are mutually dependent in the regulation of angiogenesis and endothelium-dependent vasorelaxation. PNAS. 2012;109(23):9161-9166. doi:10.1073/pnas.1202916109
- Gheibi S, Jeddi S, Kashfi K, Ghasemi A. Regulation of vascular tone homeostasis by NO and H2S: Implications in hypertension. Biochem Pharmacol. 2018;149:42-59. doi:10.1016/j.bcp.2018.01.017
- Giuffrè A, Vicente JB. Hydrogen Sulfide Biochemistry and Interplay with Other Gaseous Mediators in Mammalian Physiology. Oxidative Medicine and Cellular Longevity. 2018;2018:e6290931. doi:10.1155/2018/6290931
- Guo W, Cheng Z yu, Zhu Y zhun. Hydrogen sulfide and translational medicine. Acta Pharmacol Sin. 2013;34(10):1284-1291. doi:10.1038/aps.2013.127
- Hosoki R, Matsuki N, Kimura H. The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun. 1997;237(3):527-531. doi:10.1006/bbrc.1997.6878
- Kevil CG, Patel RP. S-nitrosothiol biology and therapeutic potential in metabolic disease. Curr Opin Investig Drugs. 2010;11(10):1127-1134.
- Kolluru GK, Shackelford RE, Shen X, Dominic P, Kevil CG. Sulfide regulation of cardiovascular function in health and disease. Nat Rev Cardiol. Published online August 5, 2022:1-17. doi:10.1038/s41569-022-00741-6
- Kuschman HP, Palczewski MB, Thomas DD. Nitric oxide and hydrogen sulfide: Sibling rivalry in the family of epigenetic regulators. Free Radical Biology and Medicine. 2021;170:34-43. doi:10.1016/j.freeradbiomed.2021.01.010
- Lin Y, Chen Y, Zhu N, Zhao S, Fan J, Liu E. Hydrogen sulfide inhibits development of atherosclerosis through up-regulating protein S-nitrosylation. Biomedicine & Pharmacotherapy. 2016;83:466-476. doi:10.1016/j.biopha.2016.07.003
- Lv B, Chen S, Tang C, Jin H, Du J, Huang Y. Hydrogen sulfide and vascular regulation – An update. Journal of Advanced Research. 2021;27:85-97. doi:10.1016/j.jare.2020.05.007
- Murphy B, Bhattacharya R, Mukherjee P. Hydrogen sulfide signaling in mitochondria and disease. FASEB J. 2019;33(12):13098-13125. doi:10.1096/fj.201901304R
- Mys LA, Strutynska NA, Goshovska YV, Sagach VF. Stimulation of the endogenous hydrogen sulfide synthesis suppresses oxidative-nitrosative stress and restores endothelial-dependent vasorelaxation in old rats. Can J Physiol Pharmacol. 2020;98(5):275-281. doi:10.1139/cjpp-2019-0411
- Nagpure BV, Bian JS. Interaction of Hydrogen Sulfide with Nitric Oxide in the Cardiovascular System. Oxidative Medicine and Cellular Longevity. 2015;2016:e6904327. doi:10.1155/2016/6904327
- Pan LL, Qin M, Liu XH, Zhu YZ. The Role of Hydrogen Sulfide on Cardiovascular Homeostasis: An Overview with Update on Immunomodulation. Front Pharmacol. 2017;8. doi:10.3389/fphar.2017.00686
- Polhemus David J., Lefer David J. Emergence of Hydrogen Sulfide as an Endogenous Gaseous Signaling Molecule in Cardiovascular Disease. Circulation Research. 2014;114(4):730-737. doi:10.1161/CIRCRESAHA.114.300505
- Rajendran S, Shen X, Glawe J, Kolluru GK, Kevil CG. Nitric Oxide and Hydrogen Sulfide Regulation of Ischemic Vascular Growth and Remodeling. Compr Physiol. 2019;9(3):1213-1247. doi:10.1002/cphy.c180026
- Szabo C. Hydrogen sulfide, an enhancer of vascular nitric oxide signaling: mechanisms and implications. Am J Physiol Cell Physiol. 2017;312(1):C3-C15. doi:10.1152/ajpcell.00282.2016
- Wallace JL, Wang R. Hydrogen sulfide-based therapeutics: exploiting a unique but ubiquitous gasotransmitter. Nat Rev Drug Discov. 2015;14(5):329-345. doi:10.1038/nrd4433
- Wu D, Hu Q, Zhu D. An Update on Hydrogen Sulfide and Nitric Oxide Interactions in the Cardiovascular System. Oxid Med Cell Longev. 2018;2018:4579140. doi:10.1155/2018/4579140
Exercise performance
- Bailey SJ, Winyard P, Vanhatalo A, et al. Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans. J Appl Physiol (1985). 2009;107(4):1144-1155. doi:10.1152/japplphysiol.00722.2009
- Bescós R, Sureda A, Tur JA, Pons A. The effect of nitric-oxide-related supplements on human performance. Sports Med. 2012;42(2):99-117. doi:10.2165/11596860-000000000-00000
- Bond H, Morton L, Braakhuis AJ. Dietary nitrate supplementation improves rowing performance in well-trained rowers. Int J Sport Nutr Exerc Metab. 2012;22(4):251-256. doi:10.1123/ijsnem.22.4.251
- Cermak NM, Gibala MJ, van Loon LJC. Nitrate supplementation’s improvement of 10-km time-trial performance in trained cyclists. Int J Sport Nutr Exerc Metab. 2012;22(1):64-71. doi:10.1123/ijsnem.22.1.64
- Coggan AR, Baranauskas MN, Hinrichs RJ, Liu Z, Carter SJ. Effect of dietary nitrate on human muscle power: a systematic review and individual participant data meta-analysis. J Int Soc Sports Nutr. 2021;18(1):66. doi:10.1186/s12970-021-00463-z
- Hoon MW, Hopkins WG, Jones AM, et al. Nitrate supplementation and high-intensity performance in competitive cyclists. Appl Physiol Nutr Metab. 2014;39(9):1043-1049. doi:10.1139/apnm-2013-0574
- Lansley KE, Winyard PG, Fulford J, et al. Dietary nitrate supplementation reduces the O2 cost of walking and running: a placebo-controlled study. J Appl Physiol (1985). 2011;110(3):591-600. doi:10.1152/japplphysiol.01070.2010
- Muggeridge DJ, Howe CCF, Spendiff O, Pedlar C, James PE, Easton C. A single dose of beetroot juice enhances cycling performance in simulated altitude. Med Sci Sports Exerc. 2014;46(1):143-150. doi:10.1249/MSS.0b013e3182a1dc51
- Pinna M, Roberto S, Milia R, et al. Effect of Beetroot Juice Supplementation on Aerobic Response during Swimming. Nutrients. 2014;6(2):605-615. doi:10.3390/nu6020605
- Sj B, J F, A V, et al. Dietary nitrate supplementation enhances muscle contractile efficiency during knee-extensor exercise in humans. Journal of applied physiology (Bethesda, Md : 1985). 2010;109(1). doi:10.1152/japplphysiol.00046.2010
- Vanhatalo A, Bailey SJ, Blackwell JR, et al. Acute and chronic effects of dietary nitrate supplementation on blood pressure and the physiological responses to moderate-intensity and incremental exercise. Am J Physiol Regul Integr Comp Physiol. 2010;299(4):R1121-1131. doi:10.1152/ajpregu.00206.2010
- Wylie LJ, Kelly J, Bailey SJ, et al. Beetroot juice and exercise: pharmacodynamic and dose-response relationships. J Appl Physiol (1985). 2013;115(3):325-336. doi:10.1152/japplphysiol.00372.2013
- Endothelial Glycocalyx ResearchThere are over 1,200 papers on PubMed that reference the endothelial glycocalyx (EGX). Below are some of the major studies on the endothelial glycocalyx (EGX), which are grouped under major headings, though the content of the studies often overlaps different fields. They are in the following categories:
- Endothelial Glycocalyx Repair
- General EGX Citations
- Blood vessel walls
- Blood pressure
- Brain health
- Kidney function
- Microvasculature
The third-party information and links provided on this website are for educational and research purposes only, and are not intended to endorse, promote, or recommend any particular ingredient(s) or product(s).
Research on Endothelial Glycocalayx Repair
Endothelial Glycocalyx Repair
- State Key Laboratory of Bioengineering, Institute of Process Engineering, Chinese Academy of Sciences. Rhamnan Sulfate in a Proprietary Extract of Monostroma Nitidum Regenerates a Compromised Endothelial Glycocalyx Shed Caused by High Glucose. Data provided by researchers. 2023, March. Manuscript.
- Franceković P, Gliemann L. Endothelial Glycocalyx Preservation-Impact of Nutrition and Lifestyle. Nutrients. 2023;15(11):2573. Published 2023 May 31. doi:10.3390/nu15112573
General EGX Citations
Alphonsus CS, Rodseth RN. The endothelial glycocalyx: a review of the vascular barrier. Anaesthesia. 2014;69(7):777-784. doi:10.1111/anae.12661
Bermejo-Martin JF, Martín-Fernandez M, López-Mestanza C, Duque P, Almansa R. Shared Features of Endothelial Dysfunction between Sepsis and Its Preceding Risk Factors (Aging and Chronic Disease). J Clin Med. 2018;7(11). doi:10.3390/jcm7110400
Cao R-N, Tang L, Xia Z-Y, Xia R. Endothelial glycocalyx as a potential therapeutic target in organ injuries. Chinese Medical Journal. 2019;132(8):963-975. doi:10.1097/CM9.0000000000000177
Cabrales P, Vázquez BYS, Tsai AG, Intaglietta M. Microvascular and capillary perfusion following glycocalyx degradation. J Appl Physiol (1985). 2007;102(6):2251-2259. doi:10.1152/japplphysiol.01155.2006
Delgadillo LF, Marsh GA, Waugh RE. Endothelial Glycocalyx Layer Properties and Its Ability to Limit Leukocyte Adhesion. Biophys J. 2020;118(7):1564-1575. doi:10.1016/j.bpj.2020.02.010
Jedlicka J, Becker BF, Chappell D. Endothelial Glycocalyx. Crit Care Clin. 2020;36(2):217-232. doi:10.1016/j.ccc.2019.12.007
Joffre J, Hellman J, Ince C, Ait-Oufella H. Endothelial Responses in Sepsis. Am J Respir Crit Care Med. 2020;202(3):361-370. doi:10.1164/rccm.201910-1911TR
Kolářová H, Ambrůzová B, Švihálková Šindlerová L, Klinke A, Kubala L. Modulation of Endothelial Glycocalyx Structure under Inflammatory Conditions. Mediators Inflamm. 2014;2014. doi:10.1155/2014/694312
McClatchey PM, Schafer M, Hunter KS, Reusch JEB. The endothelial glycocalyx promotes homogenous blood flow distribution within the microvasculature. Am J Physiol Heart Circ Physiol. 2016;311(1):H168-H176. doi:10.1152/ajpheart.00132.2016
Messier H. Glycomics in Clinical Action: The Endothelial Glycocalyx. Anti-Aging Medical News. 2019;Winter:52-57. Full text.
Rovas A, Lukasz A-H, Vink H, et al. Bedside analysis of the sublingual microvascular glycocalyx in the emergency room and intensive care unit – the GlycoNurse study. Scand J Trauma Resusc Emerg Med. 2018;26. doi:10.1186/s13049-018-0483-4
Saltiel D, What is the endothelial glycocalyx? A4M’s Anti-Aging Medical News, Winter 2023. 125-128. Full article.
Schött U, Solomon C, Fries D, Bentzer P. The endothelial glycocalyx and its disruption, protection and regeneration: a narrative review. Scand J Trauma Resusc Emerg Med. 2016;24. doi:10.1186/s13049-016-0239-y
Ushiyama A, Kataoka H, Iijima T. Glycocalyx and its involvement in clinical pathophysiologies. J Intensive Care. 2016;4(1). doi:10.1186/s40560-016-0182-z
VanTeeffelen JW, Brands J, Stroes ES, Vink H. Endothelial Glycocalyx: Sweet Shield of Blood Vessels. Trends in Cardiovascular Medicine. 2007;17(3):101-105. doi:10.1016/j.tcm.2007.02.002
Weinbaum S, Cancel LM, Fu BM, Tarbell JM. The Glycocalyx and Its Role in Vascular Physiology and Vascular Related Diseases. Cardiovasc Eng Technol. Published online September 21, 2020:1-35. doi:10.1007/s13239-020-00485-9
Weissgerber TL, Garcia-Valencia O, Milic NM, et al. Early Onset Preeclampsia Is Associated With Glycocalyx Degradation and Reduced Microvascular Perfusion. J Am Heart Assoc. 2019;8(4):e010647. doi:10.1161/JAHA.118.010647
Blood vessel walls
Akhtar S, Sharma A. Endothelial dysfunction sustains immune response in atherosclerosis: potential cause for ineffectiveness of prevailing drugs. International Reviews of Immunology. 2021;0(0):1-19. doi:10.1080/08830185.2020.1866568
Brands J, Hubel CA, Althouse A, Reis SE, Pacella JJ. Noninvasive sublingual microvascular imaging reveals sex-specific reduction in glycocalyx barrier properties in patients with coronary artery disease. Physiol Rep. 2020;8(2):e14351. doi:10.14814/phy2.14351
Cancel LM, Ebong EE, Mensah S, Hirshberg C, Tarbell JM. Endothelial glycocalyx, apoptosis and inflammation in an atherosclerotic mouse model. Atherosclerosis. 2016;252:136-146. doi:10.1016/j.atherosclerosis.2016.07.930
Eckardt V, Weber C, Hundelshausen P von. Glycans and Glycan-Binding Proteins in Atherosclerosis. Thromb Haemost. 2019;119(8):1265-1273. doi:10.1055/s-0039-1692720
Harding IC, Mitra R, Mensah SA, Nersesyan A, Bal NN, Ebong EE. Endothelial barrier reinforcement relies on flow-regulated glycocalyx, a potential therapeutic target. Biorheology. 2019;56(2-3):131-149. doi:10.3233/BIR-180205
Liu X, Fan Y, Deng X. Effect of the endothelial glycocalyx layer on arterial LDL transport under normal and high pressure. Journal of Theoretical Biology. 2011;283(1):71-81. doi:10.1016/j.jtbi.2011.05.030
Mensah SA, Nersesyan AA, Ebong EE. Endothelial Glycocalyx-Mediated Intercellular Interactions: Mechanisms and Implications for Atherosclerosis and Cancer Metastasis. Cardiovasc Eng Technol. Published online September 30, 2020. doi:10.1007/s13239-020-00487-7
Mitra R, O’Neil GL, Harding IC, Cheng MJ, Mensah SA, Ebong EE. Glycocalyx in Atherosclerosis-Relevant Endothelium Function and as a Therapeutic Target. Curr Atheroscler Rep. 2017;19(12). doi:10.1007/s11883-017-0691-9
Nemoto T, Minami Y, Yamaoka-Tojo M, et al. Endothelial glycocalyx and severity and vulnerability of coronary plaque in patients with coronary artery disease. Atherosclerosis. 2020;302:1-7. doi:10.1016/j.atherosclerosis.2020.04.014
Noble MIM, Drake-Holland AJ, Vink H. Hypothesis: arterial glycocalyx dysfunction is the first step in the atherothrombotic process. QJM: An International Journal of Medicine. 2008;101(7):513-518. doi:10.1093/qjmed/hcn024
Nieuwdorp M, Meuwese MC, Vink H, Hoekstra JB, Kastelein JJ, Stroes ES. The endothelial glycocalyx: a potential barrier between health and vascular disease. Current Opinion in Lipidology. 2005;16(5):507-511. doi:10.1097/01.mol.0000181325.08926.9c
Patil N, Gómez-Hernández A, Zhang F, et al. Abstract 11489: Oral Rhamnan Sulfate Reduces Vascular Inflammation and Atherosclerotic Plaque Formation. Circulation. 2021;144(Suppl_1):A11489-A11489. doi:10.1161/circ.144.suppl_1.11489
Patil NP, Gómez-Hernández A, Zhang F, et al. Rhamnan sulfate reduces atherosclerotic plaque formation and vascular inflammation. Biomaterials. 2022;291:121865. doi:10.1016/j.biomaterials.2022.121865
Blood pressure
Facchini L, Bellin A, Toro EF. Modeling Loss of Microvascular Wall Homeostasis during Glycocalyx Deterioration and Hypertension that Impacts Plasma Filtration and Solute Exchange. Curr Neurovasc Res. 2016;13(2):147-155. doi:10.2174/1567202613666160223121415
Ikonomidis I, Voumvourakis A, Makavos G, et al. Association of impaired endothelial glycocalyx with arterial stiffness, coronary microcirculatory dysfunction, and abnormal myocardial deformation in untreated hypertensives. J Clin Hypertens (Greenwich). 2018;20(4):672-679. doi:10.1111/jch.13236
Brain health
Ando Y, Okada H, Takemura G, et al. Brain-Specific Ultrastructure of Capillary Endothelial Glycocalyx and Its Possible Contribution for Blood Brain Barrier. Sci Rep. 2018;8(1):17523. doi:10.1038/s41598-018-35976-2
Haeren RHL, Rijkers K, Schijns OEMG, et al. In vivo assessment of the human cerebral microcirculation and its glycocalyx: A technical report. J Neurosci Methods. 2018;303:114-125. doi:10.1016/j.jneumeth.2018.03.009
Nian K, Harding IC, Herman IM, Ebong EE. Blood-Brain Barrier Damage in Ischemic Stroke and Its Regulation by Endothelial Mechanotransduction. Front Physiol. 2020;11:605398. doi:10.3389/fphys.2020.605398
Zhao F, Zhong L, Luo Y. Endothelial glycocalyx as an important factor in composition of blood-brain barrier. CNS Neurosci Ther. 2021;27(1):26-35. doi:10.1111/cns.13560
Kidney function
Butler MJ, Down CJ, Foster RR, Satchell SC. The Pathological Relevance of Increased Endothelial Glycocalyx Permeability. Am J Pathol. 2020;190(4):742-751. doi:10.1016/j.ajpath.2019.11.015
Jacob M, Chappell D, Becker BF. Regulation of blood flow and volume exchange across the microcirculation. Crit Care. 2016;20. doi:10.1186/s13054-016-1485-0
Liew H, Roberts MA, MacGinley R, McMahon LP. Endothelial glycocalyx in health and kidney disease: Rising star or false Dawn? Nephrology. 2017;22(12):940-946. doi:10.1111/nep.13161
McClatchey PM, Schafer M, Hunter KS, Reusch JEB. The endothelial glycocalyx promotes homogenous blood flow distribution within the microvasculature. Am J Physiol Heart Circ Physiol. 2016;311(1):H168-H176. doi:10.1152/ajpheart.00132.2016
Nieuwdorp M, Mooij HL, Kroon J, et al. Endothelial Glycocalyx Damage Coincides With Microalbuminuria in Type 1 Diabetes. Diabetes. 2006;55(4):1127-1132. doi:10.2337/diabetes.55.04.06.db05-1619
Salmon AHJ, Satchell SC. Endothelial glycocalyx dysfunction in disease: albuminuria and increased microvascular permeability. J Pathol. 2012;226(4):562-574. doi:10.1002/path.3964
Snoeijs MG, Vink H, Voesten N, et al. Acute ischemic injury to the renal microvasculature in human kidney transplantation. Am J Physiol Renal Physiol. 2010;299(5):F1134-1140. doi:10.1152/ajprenal.00158.2010
Yilmaz O, Afsar B, Ortiz A, Kanbay M. The role of endothelial glycocalyx in health and disease. Clin Kidney J. 2019;12(5):611-619. doi:10.1093/ckj/sfz042
Microvasculature
Cabrales P, Vázquez BYS, Tsai AG, Intaglietta M. Microvascular and capillary perfusion following glycocalyx degradation. J Appl Physiol (1985). 2007;102(6):2251-2259. doi:10.1152/japplphysiol.01155.2006
McClatchey PM, Schafer M, Hunter KS, Reusch JEB. The endothelial glycocalyx promotes homogenous blood flow distribution within the microvasculature. Am J Physiol Heart Circ Physiol. 2016;311(1):H168-H176. doi:10.1152/ajpheart.00132.2016
Ikonomidis I, Voumvourakis A, Makavos G, et al. Association of impaired endothelial glycocalyx with arterial stiffness, coronary microcirculatory dysfunction, and abnormal myocardial deformation in untreated hypertensives. J Clin Hypertens (Greenwich). 2018;20(4):672-679. doi:10.1111/jch.13236
Østergaard L. Blood flow, capillary transit times, and tissue oxygenation. The centennial of capillary recruitment. J Appl Physiol (1985). Published online October 8, 2020. doi:10.1152/japplphysiol.00537.2020
-
Research on rhamnan sulfate from Monostroma nitidum
There are over 50 papers on PubMed that reference the rhamnan sulfate from Monostroma nitidum.
Below are some of the major studies, which are grouped under major headings, though the content of the studies often overlap. Topics include:
- Biological Activity Overview
- Endothelial Glycocalyx Repair
- Blood Vessel Wall
- Blood Pressure
- Characterization & Hypoglycemic Activity
- LDL permeability
- Anti-Inflammatory Activity
- Hepatic Steatosis
- Anti-thrombin Activity
The third-party information and links provided on this website are for educational and research purposes only, and are not intended to endorse, promote, or recommend any particular ingredient(s) or product(s).
Biological Activity Overview
- Suzuki K, Terasawa M. Biological Activities of Rhamnan Sulfate Extract from the Green Algae Monostroma nitidum (Hitoegusa). Mar Drugs. 2020;18(4). doi:10.3390/md18040228
- Saltiel D. The Effects of Rhamnan Sulfate From Monostroma Nitidum: A Vascular-Focused Literature Review. Altern Ther Health Med. 2023;29(4):24-26. Proquest Preview.
Endothelial Glycocalyx Repair
- State Key Laboratory of Bioengineering, Institute of Process Engineering, Chinese Academy of Sciences. Rhamnan Sulfate in a Proprietary Extract of Monostroma Nitidum Regenerates a Compromised Endothelial Glycocalyx Shed Caused by High Glucose. Data provided by researchers. 2023, March. Manuscript.
Blood Vessel Wall
- Patil NP, Gómez-Hernández A, Zhang F, et al. Rhamnan sulfate reduces atherosclerotic plaque formation and vascular inflammation. Biomaterials. 2022;291:121865. doi:https://doi.org/10.1016/j.biomaterials.2022.121865
Blood Pressure
- Houston, Mark. An Open-Label, Single-Arm, Pilot Study to Evaluate the Effect of a Proprietary Rhamnan Sulfate (RS) Containing Dietary Supplement on Blood Pressure among Hypertensive Individuals. 2023; Mar. Manuscript.
Characterization & Hypoglycemic Activity
- Cui JF, Ye H, Zhu YJ, Li YP, Wang JF, Wang P. Characterization and Hypoglycemic Activity of a Rhamnan-Type Sulfated Polysaccharide Derivative. Mar Drugs. 2019;17(1):E21. doi:10.3390/md17010021.
LDL Permeability
- Cancel LM, Tarbell JM. Rhamnan sulfate enhances the endothelial glycocalyx and decreases the LDL permeability of human coronary artery endothelial cells in vitro. The FASEB Journal. 2013;27(S1):896.3-896.3. doi:10.1096/fasebj.27.1_supplement.896.3.
Anti-Inflammatory Activity
- Terasawa M, Hiramoto K, Uchida R, Suzuki K. Anti-Inflammatory Activity of Orally Administered Monostroma nitidum Rhamnan Sulfate against Lipopolysaccharide-Induced Damage to Mouse Organs and Vascular Endothelium. Mar Drugs. 2022;20(2):121. doi:10.3390/md20020121
- Okamoto T, Akita N, Terasawa M, Hayashi T, Suzuki K. Rhamnan sulfate extracted from Monostroma nitidum attenuates blood coagulation and inflammation of vascular endothelial cells. J Nat Med. 2019;73(3):614-619. doi:10.1007/s11418-019-01289-5
- Patil NP, Gómez-Hernández A, Zhang F, et al. Rhamnan sulfate reduces atherosclerotic plaque formation and vascular inflammation. Biomaterials. 2022;291:121865. doi:10.1016/j.biomaterials.2022.121865
Hepatic Steatosis
- Zang L, Shimada Y, Tanaka T, Nishimura N. Rhamnan sulphate from Monostroma nitidum attenuates hepatic steatosis by suppressing lipogenesis in a diet-induced obesity zebrafish model. Journal of Functional Foods. 2015;17:364-370. doi:10.1016/j.jff.2015.05.041
Anti-Thrombin Activity
- Harada N, Maeda M. Chemical structure of antithrombin-active Rhamnan sulfate from Monostroma nitidum. Biosci Biotechnol Biochem. 1998;62(9):1647-1652. doi:10.1271/bbb.62.1647
- Liu X, Du P, Liu X, et al. Anticoagulant Properties of a Green Algal Rhamnan-type Sulfated Polysaccharide and Its Low-molecular-weight Fragments Prepared by Mild Acid Degradation. Mar Drugs. 2018;16(11):E445. doi:10.3390/md16110445
- Liu X, Wang S, Cao S, et al. Structural Characteristics and Anticoagulant Property In Vitro and In Vivo of a Seaweed Sulfated Rhamnan. Marine Drugs. 2018;16(7):243. doi:10.3390/md16070243
- Okamoto T, Akita N, Terasawa M, Hayashi T, Suzuki K. Rhamnan sulfate extracted from Monostroma nitidum attenuates blood coagulation and inflammation of vascular endothelial cells. J Nat Med. 2019;73(3):614-619. doi:10.1007/s11418-019-01289-5